Cryptograpfy

- Overview
- Symmetric Key Cryptograpfy
\square Public Key Cryptography
\square Message integrity and digital signatures

Cryptography issues

Confidentiality: only sender, intended receiver should "understand" message contentssender encrypts messagereceiver decrypts message
End-Point Authentication: sender, receiver want to confirm identity of each other
Message Integrity: sender, receiver want to ensure message not altered (in transit, or afterwards) without detection

Friends and enemies: Alice, Bob, Trudywell-known in ne tworksecurity world$\mathcal{B o b}$, Alice (Lovers!) want to communicate "securely"Trudy (intruder) may intercept, delete, add messages

Whomight Bob, Alice be?

$\square \ldots$...well, real-life Bobs and Alices!
\square We 6 browser/server for electronic transactions (e.g., on-line purcfases)
\square on-line banking client/server
$\square \mathcal{D N}$ servers
\square routers exchanging routing table updates

Tfe language of cryptograpfy

mplaintext message
$\mathcal{K}_{\mathbb{R}}(\mathrm{m})$ ciphertext, encrypted with Key \mathcal{K}_{g}
$m=\mathcal{K}_{B}\left(\mathcal{K}_{g}(m)\right)$

Simple encryptionscfume

substitution cipfer: substituting one thing for another
O monoalpfabetic cipfer: substitute one letter for another
plaintext: abcdefghijklmnopqrstuvwxyz ciphertext: mnbvcxzasdfghjklpoiuytrewq
E.g.: Plaintext: bob. i love you. alice ciphertext: nkn. s gktc wky. mgsbc

```
Key: the mapping from the set of 26 letters to the
set of 26 letters
```


Polyalphabetic encryption

\square n monoalphabetic cyphers, $\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots, \mathcal{M}_{n}$
\square Cycling pattern:
Oe.g., $n=4, \mathcal{M}_{1}, \mathcal{M}_{3}, \mathcal{M}_{4}, \mathcal{M}_{3}, \mathcal{M}_{2} ; \mathcal{M}_{1}, \mathcal{M}_{3}, \mathcal{M}_{4}, \mathcal{M}_{3}, \mathcal{M}_{2} ;$
\square For each new plaintext symbol, use subsequent monoalphabetic pattern in cyclic pattern
O dog: d from \mathfrak{M}_{1}, ofrom $\mathcal{M}_{3}, \operatorname{g}$ from \mathfrak{M}_{4}
$\square \underline{\text { Key: the } n \text { cipfers and the cyclic pattern }}$

Breaking an encryption scheme

\square Cipher-text only attack: Trudy fras ciphertext that she can analyze
\square Two approacfies:

- Searctitrougfall keys: must be able to differentiate resulting plaintext from gibberisf
- Statistical analysis
\square Rnown-plaintext attack: trudy fas some plainte xt corresponding to some ciphertext
O eg, in monoalpfabetic cipfer, trudy determines pairings for a, l, i, c, e, b, o,
\square Chosen-plaintext attack: trudy canget the cyphertext for some chosen plaintext

Types of Cryptograpfy

\square Crypto often uses Keys:
O Algorititin is known to everyone
O Only "keys" are secret
\square Public key cryptograpfy
O Involves the use of two keys
$\square S y m m e t r i c k e y c r y p t o g r a p h y ~$
O Involves the use one key
$\square \mathcal{H a s h}$ functions

- Involves the use of no keys
- Notring secret: How can this be useful?

Symmetric Key cryptograpfy

symmetric Key crypto: Bob and Alice sfiare same (symmetric) key: \mathcal{K}_{s}
\square e.g., Key is Knowing substitution pattern in mono alphabetic substitution cipher
Q: fow do Bob and Alice agree on key value?

Two types of symmetric cipfers

\square Stream cipfers
Oencrypt one bit at time
$\square \mathcal{B L o c k c}$ ciphers

- Breakplaintext message in equal-size blocks

O Encrypt eact block as a unit

Stream Cipfers

\square Combine each bit of Keystream with bit of plaintext to get 6it of ciphertext
$\square m(i)=$ ith bit of message
$\square k s(i)=$ ith bit of Keystream
$\square c(i)=$ ith 6 it of ciphertext
$\square c(i)=k s(i) \oplus m(i) \quad(\oplus=e x c$ lusive or $)$
$\square m(i)=k s(i) \oplus c(i)$

Problems with stream cipfers

Known plain-text attack
\square There's often predictable and repetitive data in communication messages
\square attacker receives some cipher text c and correctly guesses corresponding plaintext m
$\square k s=m \oplus c$

- Attacker now observes c; obtained with same sequence ks
$\square m^{\prime}=k s \oplus c^{\prime}$

Eveneasier
\square Attacker obtains two ciphertexts, c and c; generating with same key sequence
$\square c \oplus c^{\prime}=m \oplus m^{\prime}$
\square There are well known methods for decrypting 2 plaintexts given the ir $X O R$
Integrity problem too
\square suppose attacker knows c and m (eg, plaintext attack);
\square wants to change m to m '
\square calculates $c^{\prime}=c \oplus\left(m \oplus m^{\prime}\right)$
\square sends c 'to destination

RC4 Stream Cipfuer

\square RC4 is a popular stream cipher
O Extensively analyzed and considered good
O Keycan be from 1 to 256 bytes
O Ulsed in WEP for 802.11

- Can be used in SSL

Block ciphers

Message to be encrypted is processed in 6 locks of k bits (egg., 64-bit 6 locks).
1-to-1 mapping is used to map K- bit block of plaintext to K- bit 6 lock of ciphertext
Example with $K=3$:

$\frac{\text { input }}{000}$	$\frac{\text { output }}{110}$	$\frac{\text { input }}{100}$	$\frac{\text { output }}{011}$
001	111	101	010
010	101	110	000
011	100	111	001

What is the ciphertext for 010110001111 ?

Blockciphers
$\square \mathcal{H o w m a n y ~ p o s s i b l e ~ m a p p i n g s ~ a r e ~ t h e r e ~ f o r ~}$ $K=3$?

- How many 3-6it inputs?
- How many permutations of the 3-6it inputs?

O Answer:40,320; not verymany!
\square Ingeneral, $2^{k!}$ mappings; fuge for $k=64$

- Problem:

O Table approactrequires table witf 2^{64} entries, eachentry with 64 bits
\square Table too $\begin{aligned} \text { Gig: instead use function that }\end{aligned}$ simulates a randomly permuted table

Prototype function

Why rounds in prototpe?

\square If only a single round, then one bit of input affects at most 8 bits of output.
\square In $2^{\text {nd }}$ round, the 8 affected bits get scattered and inputted into multiple substitution boxes.
\square How many rounds?
O How many times do youneed to sfuffle cards
O Becomes less efficient as nincreases

Encrypting a large message

\square Why not just break message in 64-6it 6 locks, encrypt each 6 lock separately?
O If same block of plaintext appears twice, will give same cypfertext.
$\square \mathcal{H o w}$ ab out:
O Generate random 64-6it number r(i)for eacri plaintext blockm(i)

- Calculate $c(i)=\mathcal{K}_{s}(m(i) \oplus r(i))$
- Transmit $c(i), r(i), i=1,2, \ldots$

○ $\mathcal{A t}$ receiver: $m(i)=\mathcal{K}_{S}(c(i)) \oplus r(i)$
O Problem: inefficient, need to send $c(i)$ and $r(i)$

Cipher Block Chaining (CBC)

\square CBC generates its own random numbers
O Have encryption of current block depend on result of previous 6lock
$O c(i)=\mathcal{K}_{s}(m(i) \oplus c(i-1))$
$\bigcirc m(i)=\mathcal{K}_{s}(c(i)) \oplus c(i-1)$
\square How do we encrypt first 6lock?

- Intialization vector (IV): random block $=c(0)$
- IV does not have to be secret
\square Change IV for each message (or session)
- Guarantees that even if the same message is sent repeatedly, the cipfertext will be completely different each time

Symmetric key crypto: DES

DES: Data Encryption Standard
US encryption standard [\mathcal{N} IST T 1993]
56- Git symmetric Key, 64- Git plaintext input
Block cipher with cipher block chaining
How secure is $\mathcal{D E S}$?

- DES Challenge: 56-bit-Key-encrypted phrase decrypted (brute force) in less than a day
- No known good analytic attack
making $\mathcal{D E S}$ more secure:
- 3DES: encrypt 3 times with 3 different keys (actually encrypt, decrypt, encrypt)

Symmetric key
 crypto: DES

$\left[\begin{array}{l}\text { DES operation } \\ \text { initial permutation }\end{array}\right.$ 16 identical "rounds" of function application, eachusing different 48 bits of key
final permutation

AES: Advanced Encryption Standard

\square new ($\mathfrak{N o v . 2 0 0 1) ~ s y m m e t r i c - k e y ~} \mathcal{N I S T}$ standard, replacing $\mathcal{D E S}$
\square processes data in 128 6it blocks
$\square 128,192$, or 256 6it Keys
\square brute force decryption (try each key) taking 1 sec on $\mathcal{D E S}$, takes 149 trillion years for $\mathcal{A E S}$

Public Key Cryptograpfy

symmetric key crypto
\square requires sender, receiver knowshared secret key
$\square Q$: fow to agree on key in first place (particularly if never "met")?
public Key cryptography
\square radically different approack [Diffie.
$\mathcal{H e}[$ [man76, RS A78]
\square sender, receiver do not share secret key
\square public encryption key known to all
\square private decryption key known only to receiver

Public Key cryptography

Public Key encryption algoritfors

Requirements:
(1) need $\mathcal{K}_{\mathcal{B}}^{+}(\cdot)$ and $\mathcal{K}_{\mathcal{B}}^{-}(\cdot)$ such that

$$
\mathcal{K}_{\mathcal{B}}^{-}\left(\mathcal{K}_{\mathcal{B}}^{+}(m)\right)=m
$$

(2) given public key $\mathcal{K}_{\mathcal{B}}^{+}$, it should be impossible to compute private Key $\mathcal{K}_{\mathcal{B}}$

RS A: Rives t, S fair, Adelson algorithm

Prerequisite: modular arithmetic

$\square \quad x \bmod n=r e m a i n d e r$ of x when divide by n
\square Facts:
$[(a \bmod n)+(6 \bmod n)] \bmod n=(a+b) \bmod n$ $[(a \bmod n) \cdot(6 \bmod n)] \bmod n=(a-b) \bmod n$ $\left[(\operatorname{amod} n)^{*}(6 \bmod n)\right] \bmod n=\left(a^{*} b\right) \bmod n$

- Tfus
$(a \bmod n)^{d} \bmod n=a^{d} \bmod n$
\square Example: $x=14, n=10, d=2$:
$(x \bmod n)^{d} \bmod n=4^{2} \bmod 10=6$
$x^{d}=14^{2}=196 \quad x^{d} \bmod 10=6$

RS A: getting ready

$\square \mathcal{A}$ message is a bit pattern.
$\square \mathcal{A}$ bit pattern can be uniquely represented by an integer number.
\square Thus encrypting a message is equivalent to encrypting a number.

Example

$\square m=10010001$. This message is uniquely represented by the decimal number 145.
\square To encrypt m, we encrypt the corresponding number, which gives a ne wnmber (the cypfertext).

RS A: Creating public/private Key

pair

1. Choose two large prime numbers p, q.
(egg., 1024 bits each)
2. Compute $n=p q, \quad z=(p-1)(q-1)$
3. Choose e (with er) that has no common factors with z. (e, z are "relative fy prime").
4. Choose d such that ed-1 is exactly divisible by z. (in other words: ed mod $z=1$).
5. Public key is $\underbrace{(n, e) .}_{\mathcal{K}_{\mathcal{B}}^{+}}$Private key is $\underbrace{(n, d)}_{\mathcal{K}_{\mathcal{B}}^{-}}$.

RS $\mathcal{A}:$ Encryption, decryption

0. Given (n, e) and (n, d) as computed above
1. To encrypt message $m(<\pi)$, compute

$$
c=m^{e} \bmod n
$$

2. To decrypt received bit pattern, c, compute

$$
m=c^{d} \bmod n
$$

RSA example:

$\mathcal{B o b}$ chooses $p=5, q=7$. Then $n=35, z=24$.

$$
\begin{aligned}
& e=5 \text { (so e, } z \text { relatively prime). } \\
& d=29 \text { (so ed-1 exactly divisible by } z \text {). }
\end{aligned}
$$

Encrypting 8-6it messages.

Why does RSA work?

\square Must show that $c^{d} \bmod n=m$ where $c=m^{e}$ mod n
\square Fact: for any x and $y: x^{y} \bmod n=x^{(y \bmod z)} \bmod n$
O where $n=p q$ and $z=(p-1)(q-1)$
\square Thus,

$$
\begin{aligned}
c^{d} \bmod n & =\left(m^{e} \bmod n\right)^{d} \bmod n \\
& =m^{e d} \bmod n \\
& =m^{(e d \bmod z)} \bmod n \\
& =m^{1} \bmod n \\
& =m
\end{aligned}
$$

RS A: another important property

The following property will be very usefullater:

$$
\underbrace{\mathcal{K}_{\mathcal{B}}^{-}\left(\mathcal{K}_{\mathcal{B}}^{+}(m)\right)}=m=\underbrace{\mathcal{K}_{\mathcal{B}}^{+}\left(\mathcal{K}_{\mathcal{B}}^{-}(m)\right)}
$$

use public key use private key
first, followed first, followed
by private key by public key

Result is the same!
\mathcal{W} Ky $\mathcal{K}_{\mathcal{B}}^{-}\left(\mathcal{K}_{\mathcal{B}}^{+}(m)\right)=m=\mathcal{K}_{\mathcal{B}}^{+}\left(\mathcal{K}_{\mathcal{B}}^{-}(m)\right) \quad ?$

Follows directly from modular arithmetic:
$\left(\operatorname{m}^{e} \bmod n\right)^{d} \bmod n=\operatorname{med}^{e d} \bmod n$

$$
\begin{aligned}
& =m^{d e} \bmod n \\
& =\left(m^{d} \bmod n\right)^{e} \bmod n
\end{aligned}
$$

Why is RSA Secure?
$\square S$ uppose you know Bob's public Key (ne). Howfrard is it to determine d?
Essentially need to find factors of n without knowing the two factors p and q.
\square Fact: factoring a big number is fard.
Generating RSAKeys
\square Have to find big primes p and q
$\square \mathcal{A p p r o a c h}$: make good guess then apply testing rules (see Kaufman)

Sessionkeys

\square Exponentiation is computationally intensive
$\square \mathcal{D E S}$ is at least 100 times faster than $\mathcal{R S} \mathcal{A}$
Sessionkey, \mathcal{K}_{s}
$\square \mathcal{B o b}$ and Alice use $\mathcal{R S} \mathcal{A}$ to exchange a symmetric Key \mathcal{K}_{s}
\square Once botf have \mathcal{K}_{s}, they use symmetric Key cryptograpfy

Diffie-Hellman

$\square \mathcal{A l l o w s}$ two entities to agree on shared key.
O But does not provide encryption
$\square p$ is a large prime; g is a number less than p.
O p and g are made public
\square Alice and Bobeach separately choose 512 . bit random numbers, $\mathcal{S}_{\mathcal{A}}$ and $\mathcal{S}_{\mathcal{B}}$.
O the private keys
$\square \mathcal{A l i c e}$ and $\mathcal{B o b}$ compute public Keys:
$\bigcirc \mathcal{T}_{\mathfrak{A}}=g^{\mathcal{S}} \bmod p ; \quad \mathcal{T}_{\mathcal{B}}=g^{\mathcal{S}} \bmod \bmod$

Diffie-He Lman (2)

\square Alice and $\mathcal{B o b}$ exchange $\mathcal{T}_{\mathcal{A}}$ and $\mathcal{T}_{\mathcal{B}}$ in the clear
\square Alice computes $\left(\mathcal{T}_{\mathcal{B}}\right)^{\mathcal{A}} \bmod p$
$\square \mathcal{B o b}$ computes $\left(\mathcal{T}_{\mathfrak{A}}\right)_{\mathcal{B}} \bmod p$
\square shared secret:

 Trudy cannot easily determine S.
\square Problem: Man-in-the-middle attack:
O Alice doesn't know for sure trat $\mathcal{T}_{\mathcal{B}}$ came from $\mathcal{B o b}$; may be Trudy instead
O See Kaufmanet alfor solutions

Diffie-Hellman: Toy Example

$\square p=11$ and $g=5$
\square Private Keys: $\mathcal{S}_{\mathcal{A}}=3$ and $\mathcal{S}_{\mathcal{B}}=4$
Public keys:
$\square \mathcal{I}_{\mathcal{A}}=\mathcal{g}^{\mathcal{A}} \bmod p=5^{3} \bmod 11=125 \bmod 11=4$
$\square \mathcal{T}_{\mathcal{B}}=g^{\mathcal{S}} \operatorname{Bi} \bmod p=5^{4} \bmod 11=625 \bmod 11=9$
Exchange public keys fompute shared secret:
$\square\left(\mathcal{T}_{\mathcal{B}}\right)^{\mathcal{A}} \bmod p=9^{3} \bmod 11=729 \bmod 11=3$
$\square\left(\mathcal{T}_{\mathcal{A}}\right)^{\mathcal{B}} \bmod p=4^{4} \bmod 11=256 \bmod 11=3$
Shared secret:
$\square 3=$ symmetric key

Message Integrity

$\square \mathcal{A l l o w s}$ communicating parties to verify that received messages are authentic.
O Content of message fias not beenaltered
O Source of message is who/what youtrink it is
O Message fas not been artificially delayed (playbackattack)
OSequence of messages is maintained
\square Let's first talk about message digests

Message Digests

\square Function $\mathcal{H}()$ that takes as input an arbitrary length message and outputs a fixed-length string: "message signature"
$\square \mathcal{N}$ ote that $\mathcal{H}()$ is a many . to-1 function
$\square \mathcal{H}()$ is often called a"fiash function"

\square Desirable properties:

- Easy to calculate
- Irreversibility: Can't
determine m from $\mathcal{H}(m)$
- Collision resistance:

Computationally difficult to produce mand m'sucf that $\mathcal{H}(m)=\mathcal{H}\left(m^{\prime}\right)$
O Seemingly random output

Internet checksum: poor message digest

Internet checksum has some properties of hash function:
\checkmark produces fixed length digest (16-6it sum) of input
\checkmark is many-to-one
\square But given message with given hash value, it is easy to find another message with same fash value.
\square Example: Simplified checksum: add 4-byte chunks at a time:

Hasf Function Algorithms

$\square \mathfrak{M D} 5$ fast function widely used (RFC 1321)
Ocomputes 128-6it message digest in 4-step process.

- $\mathcal{S H A}-1$ is also used.
- UlS standard [NIST, FiPS PUB 180-1]

O 160-bit message digest

Message Authentication Code (MAC)

\square Authenticates sender
\square Verifies message integrity
$\square \mathcal{N}$ o encryption!
\square Also called "Keyed hasf"
$\square \mathcal{N}$ otation: $\mathcal{M D}_{m}=\mathcal{H}(s| | m)$; send $m\left|\mid \mathcal{M D}_{m}\right.$

$\underline{\mathcal{H} \mathcal{M A C}}$

\square Popular $\mathcal{M A C}$ standard
\square Addresses some subtle security flaws

1. Concatenates secret to front of message.
2. Hasfies concatenated message
3. Concatenates the secret to front of digest
4. Hasfies the combination again.

Example: OS PG

\square Recall that OSPF is an intra-AS routing protocol
\square Each router creates map of entire $\mathcal{A S}$ (or area) and runs
sfortest path
algoritfm over map.
\square Router receives link. state advertisements ($\mathcal{L S} \mathcal{A s}$) from all other routers in $\mathcal{A S}$.

Attacks:
\square Message insertion
\square Message deletion
\square Message modification
$\square \mathcal{H o w}$ do we know if an OS PF message is authentic?

OS PF Autfentication

\square Within an Autonomous
System, routers send OSPG messages to each other.
$\square O S P \mathcal{F}$ provides
authentication choices

- No authentication
- Stared password: inserted in clear in 64. bit authentication field in OS PF packet
- Cryptograpfic Kasf
\square Cryptograpfic hasf with $\mathfrak{M D} 5$
O 64-6it aut反entication field includes 32-6it sequence number
- $\operatorname{MD} 5$ is run over a concatenation of the OS PF packet and shared secret key
- MD5 fast tren appended to OSPF packet; encapsulated in IPdatagram

End-point autfentication

\square Want to be sure of the originator of the message - end-point authentication.
$\square \mathcal{A s s u m i n g}$ Alice and Bob have a shared secret, will $\mathcal{M A C}$ provide message authentication.

- We do know that Alice created the message.

O But did she send it?

Playbackattack

Defending against playback

 attack: nonce

Digital Signatures

Cryptograpfic tecfinique analogous to fand. written signatures.
\square sender (Bob) digitally signs document, establisfing he is document owner/creator.
\square Goal is similar to that of a MAC, except now use public-key cryptography
\square verifiable, nonforgeable: recipient (Alice) can prove to some one that $\mathcal{B o b}$, and no one else (including Alice), must have signed document

Digital Signatures

Simple digital signature for message m:
$\square \mathcal{B o b}$ signs m by encrypting with his private key $\mathcal{K}_{B_{B}}^{*}$ creating "signed" message, $\mathcal{K}_{\mathcal{B}}^{(}(m)$

$\underline{\text { Digital } \text { signature }=\text { signed message digest }}$

Bob sends digitally signed message:

Alice verifies signature and integrity of digitally signed message:

Digital Signatures (more)

\square Suppose $\mathcal{A l i c e}$ receives $m s g$, digital signature $\mathcal{K}_{B}^{-}(m)$
\square Alice verifies m signed by Bob by applying Bob's public Key $\mathcal{K}_{\mathcal{B}}^{+}$to $\mathcal{K}_{\mathcal{B}}^{-}(m)$ thenchecks $\mathcal{K}_{\mathcal{B}}^{+}\left(\mathcal{K}_{\mathcal{B}}^{-}(m)\right)=m$.
\square If $\mathcal{K}_{\mathcal{B}}^{+}\left(\mathcal{K}_{\mathcal{B}}^{-}(m)\right)=m$, whoever signed m must fave used Bob's private key.

Alice thus verifies that:
$\checkmark \mathcal{B o b}$ signed m.
\checkmark No one else signed m.
\checkmark Bob signed mand not m:
Non-repudiation:
\checkmark Alice can take m, and signature $\mathcal{K}_{B}(m)$ to court and prove that $\mathcal{B o b}$ signed m.

Public-Keycertification

\square Motivation: \mathcal{T} rudy plays pizza prank on $\mathcal{B o} \sigma$
O Trudy creates e-mail order:
De ar Pizza Store, Ple ase deliver to me four pepperoni pizzas. Thank you, $\mathcal{B o} 6$
O Trudy signs order witf fier private key

- Irudy sends order to Pizza Store

O Trudy sends to Pizza Store fier public Key, but says it's Bob's public key.
O Pizza Store verifies signature; thendelivers four pizzas to Bob.

- Bob doesn't even like Pepperoni

Certification Authorities

\square Certification authority (CA): Ginds public key to particular entity, \mathcal{E}.
$\square \mathcal{E}$ (person, router) registers its public key with CA.

- Eprovides "proof of identity" to CA.
- CAcreates certificate Ginding \mathcal{E} to its public Key.

O certificate containing \mathcal{E}^{\prime} public key digitally signed by CA - CA says "tris is 踶 public Key"

Certification Authorities

- When Alice wants Bob's public key:

Ogets Bob's certificate (Bob or elsewfere).

- apply CA's public Key to Bob's certificate, get Bob's public key

Certificates:summary

\square Primary standard X. 509 (RFC 2459)
\square Certificate contains:
O Issuer name
O Entity name, address, domain name, etc.

- Entity's public Key
- Digitalsignature (signed witf issuer's private Key)
\square Public-Key Infrastructure (PKI)
- Certificates and certification autrorities

OOftenconsidered "heavy"

